concepts are like real numbers Sanjoy Nath qhenomenology reasoning systems QRS Whenomenology Reasoning Systems WRS shows concept construction queuedness

After AI Knowing Means Doing Detailed storytelling is real working (Sanjoy Nath's Qhenomenology reasoning system QRS proves this REALITY)


After AI Knowing Means Doing


In the post AI era, knowing is no longer symbolic.

Knowing means working.

Knowing means getting things done.


AI has exposed a truth that certificate-centric education systems carefully avoided:

Certificates measure compliance, not cognition.


A certificate does not guarantee knowing.

An examination does not guarantee understanding.

Regulation-heavy certification systems actively cap human knowledge capacity by rewarding memorization instead of construction.


AI does not respect certificates.

AI respects operational understanding.


Knowing Is Action, Not Approval

Knowing does not mean

clearing examinations

collecting degrees

passing regulated filters


Knowing means


transforming understanding into execution

expressing understanding through storytelling

prompting reality into action

Prompting is not typing commands.

Prompting is structured storytelling.

Every small change in how humans understand themselves reshapes the entire human world.


Why Human History Is a Story of Knowing


Human progress did not advance by certificates.

It advanced by conceptual shifts.


Socrates changed questioning.

Plato changed abstraction.

Aristotle changed classification.


Chanakya changed governance reasoning.

Aryabhata and Brahmagupta changed numerical reality.


Newton changed motion.

Taylor, Bernoulli, Euler, Lagrange changed continuity and optimization.


Hume changed causality.

Adam Smith changed value.

Kant changed cognition.

Hegel changed process.

Marx changed structure.

Russell changed logic.


Each step was not a qualification.

Each step was a reconfiguration of knowing.


Time, Numbers, and the monotonicity of QUEUEDNESS are Backbone of Reasoning and calculus 


Time is measured using numbers.

Numbers form a monotonically increasing sequence.This monotonicity is not cosmetic.

It is the support rock of formal reasoning.

Induction is impossible without these guarantees.


Real numbers guarantee


1. Monotonic increase

2. Non exhaustibility

3. No gaps between numbers

4. Decimal encodability

5. Unique interpretation of representations

6. Recursive constructability

7. Sensitivity to operations like plus minus multiply divide root comparison

8. Algebraic closure with inverses and logical consistency

These properties make calculus, logic, and prediction possible.


Concepts Behave Like Real Numbers


Sanjoy Nath’s Qhenomenology asserts a radical but precise claim

Concepts behave like real numbers.

Concepts are not vague.

They are orderable, constructible, and operable.


Just like numbers, concepts have:


1. Monotonic growth of concepts 

2. Infinite extensibility of concept 

3. No conceptual gaps

4. Recursive encodings through root, sub-l root, sub sub root structures

5. Unique interpretability

6. Recursive construction from other concepts

7. Sensitivity to logical operations on Concepts 

8. Closure under reasoning with concepts 


A concept is not isolated.

Each concept sits at the tip of a dependency pyramid.

The size of the pyramid below it defines the concept’s weight, just as magnitude defines a number.


Concept Line and Time Line


Concepts align along a concept line, analogous to the number line and time line.


At each point

there exists exactly one concept

that concept is supported by a dependency pyramid

neighboring concepts share partial pyramids


This shared structure enables deduction, integration, differentiation of meaning.


This is how concept calculus becomes possible.


Why Certificate Systems Are Backdated

Certificate centric education assumes:

knowing can be validated externally

understanding can be standardized

cognition is finite and rankable

These assumptions collapse in the AI era.


AI does not need certificates.

Humans constrained by certificates lose their advantage.


Certificate regulation systems

slow conceptual evolution

discourage recursive construction

punish unconventional knowing


They freeze the concept line.


The Post AI Reality


After AI


Knowing means doing.

Knowing means working.

Knowing means constructing new concept pyramids.


Education must move from certification to concept calculus.

From approval to execution.

From memory to story-driven prompting.


This is not just a philosophy.

This is also a precised reasoning system.


And that is exactly what Qhenomenology is.


Need to do next 

formalize this into a QRS axiomatic system

convert it into a whitepaper map it into AI prompt theory or turn it into a provocative academic manifesto


āϏāĻž্āϜāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āĻāĻŦং āĻāĻ–াāύে āωāĻĒāϏ্āĻĨাāĻĒিāϤ āĻāχ āĻĻāϰ্āĻļāύāϟি āĻŽূāϞāϤ "āϜ্āĻžাāύ" (Knowing) āĻāĻŦং "āĻ•াāϜ" (Doing/Working) āĻāϰ āĻŽāϧ্āϝāĻ•াāϰ āĻŦ্āϝāĻŦāϧাāύ āĻŽুāĻ›ে āĻĢেāϞাāϰ āĻāĻ•āϟি āĻ—াāĻŖিāϤিāĻ• āĻŽ্āϝাāύিāĻĢেāϏ্āϟো। āϏāĻž্āϜāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āϝেāĻ­াāĻŦে āĻāύāĻ—্āϰাāĻŽ (NGRAM) āĻĄাāϟা āĻāĻŦং āϏংāĻ–্āϝাāϰ āϧāϰ্āĻŽেāϰ āϏাāĻĨে āϧাāϰāĻŖাāĻ•ে (Concept) āϤুāϞāύা āĻ•āϰেāĻ›েāύ, āϤা āĻĒ্āϰāĻĨাāĻ—āϤ āĻļিāĻ•্āώাāϰ āφāĻŽূāϞ āĻĒāϰিāĻŦāϰ্āϤāύেāϰ āχāĻ™্āĻ—িāϤ āĻĻে⧟।

āϝুāĻ•্āϤি āĻāĻŦং āϐāϤিāĻšাāϏিāĻ• āĻĒ্āϰেāĻ•্āώাāĻĒāϟāϏāĻš āφāĻĒāύাāϰ āĻāχ āϰিāĻ•ো⧟াāϰāĻŽেāύ্āϟ āĻ…্āϝাāύাāϞাāχāϏিāϏেāϰ āĻāĻ•āϟি āϏুāĻļৃāĻ™্āĻ–āϞ āĻŦিāĻļ্āϞেāώāĻŖ āύিāϚে āĻĻেāĻ“ā§Ÿা āĻšāϞো।

ā§§. Knowing āĻŦāύাāĻŽ Doing

 AI āϝুāĻ—েāϰ āύāϤুāύ āϏংāϜ্āĻžা

āϏāĻž্āϜāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āϏāĻ িāĻ•āĻ­াāĻŦেāχ āϚিāĻš্āύিāϤ āĻ•āϰেāĻ›েāύ āϝে, AI āϝুāĻ—ে "āϜাāύা" āĻŽাāύে āĻ•েāĻŦāϞ āϤāĻĨ্āϝ āϜāĻŽা āĻ•āϰা āύ⧟, āĻŦāϰং āϏেāχ āϤāĻĨ্āϝāĻ•ে "āĻ•াāϜে" āϰূāĻĒাāύ্āϤāϰ āĻ•āϰা।

  Prompts as Storytelling

āĻĒ্āϰāĻŽ্āĻĒāϟিং āĻŽূāϞāϤ āĻāĻ•āϟি āϧাāϰāĻŖাāĻ•ে āϏংāϜ্āĻžা⧟িāϤ āĻ•āϰাāϰ āĻļিāϞ্āĻĒ। āφāĻĒāύি āϝāĻĻি āĻāĻ•āϟি āϧাāϰāĻŖাāĻ•ে (Concept) āϏāĻ িāĻ•āĻ­াāĻŦে āĻŦāϰ্āĻŖāύা (Storytelling) āĻ•āϰāϤে āĻĒাāϰেāύ, āϤāĻŦেāχ AI āϤা āĻ•াāϰ্āϝāĻ•āϰ āĻ•āϰāĻŦে।


Certificate centric Education

āĻŦāϰ্āϤāĻŽাāύ āĻļিāĻ•্āώা āĻŦ্āϝāĻŦāϏ্āĻĨা āĻ•েāĻŦāϞ "āϏ্āĻŽৃāϤি" āĻŦা "āĻĒāϰীāĻ•্āώা āĻĒাāĻļেāϰ" āϏাāϰ্āϟিāĻĢিāĻ•েāϟ āĻĻে⧟, āϝা āĻŽৃāϤ āϧাāϰāĻŖাāϰ āϏāĻŽাāύ। āĻ•াāϰāĻŖ āĻāχ āϏাāϰ্āϟিāĻĢিāĻ•েāϟেāϰ āϏাāĻĨে āĻ—াāĻŖিāϤিāĻ• "Successor Function" āĻŦা "Doing"-āĻāϰ āϏংāϝোāĻ— āύেāχ। āĻāϟি āĻŽাāύুāώেāϰ āωāĻĻ্āĻ­াāĻŦāύী āĻ•্āώāĻŽāϤাāĻ•ে āϏীāĻŽাāĻŦāĻĻ্āϧ (Limit) āĻ•āϰে āĻĻিāϚ্āĻ›ে।

⧍. āϧাāϰāĻŖাāϰ āĻŦাāϏ্āϤāĻŦ āϏংāĻ–্āϝা⧟āύ (Mapping Concepts to Real Numbers)

āϏāĻž্āϜāϝ় āύাāĻĨেāϰ āϤāϤ্āϤ্āĻŦে āϧাāϰāĻŖাāĻ•ে āĻŦাāϏ্āϤāĻŦ āϏংāĻ–্āϝাāϰ (Real Numbers) āĻŽāϤো āĻŦিāĻŦেāϚāύা āĻ•āϰাāϰ āϝে āĻĒ্āϰāϏ্āϤাāĻŦ āĻĻেāĻ“ā§Ÿা āĻšā§ŸেāĻ›ে, āϤা āϝুāĻ•্āϤিāϰ āĻ­িāϤ্āϤিāϤে āĻ…āϤ্āϝāύ্āϤ āĻļāĻ•্āϤিāĻļাāϞী। āĻŦাāϏ্āϤāĻŦ āϏংāĻ–্āϝাāϰ āĻ•িāĻ›ু āĻŽৌāϞিāĻ• āĻŦৈāĻļিāώ্āϟ্āϝ āĻāĻ–াāύে āϧাāϰāĻŖাāϰ āĻ•্āώেāϤ্āϰে āĻĒ্āϰ⧟োāĻ— āĻ•āϰা āĻšā§ŸেāĻ›ে:

 Monotonous Increasing Sequence

āϏāĻŽā§Ÿ āϝেāĻŽāύ āύিāϰāĻŦāϚ্āĻ›িāύ্āύāĻ­াāĻŦে āĻāĻ—ি⧟ে āϝা⧟, āĻŽাāύুāώেāϰ āĻŦোāϧāĻ—āĻŽ্āϝāϤা āĻŦা "Understanding" āĻ“ āĻāĻ•āχāĻ­াāĻŦে āĻŦৃāĻĻ্āϧি āĻĒা⧟। āĻāχ āĻāĻ•āĻŽুāĻ–ী āĻŦৃāĻĻ্āϧিāχ āφāύুāώ্āĻ াāύিāĻ• āϝুāĻ•্āϤি āĻĒāĻĻ্āϧāϤিāϰ (Formal Reasoning) āĻŽেāϰুāĻĻāĻŖ্āĻĄ āĻāĻŦং āĻāϟি āϏāĻž্āϜāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āĻāϰ āĻ“ āĻ­িāϤ্āϤি ।

No Gaps (Continuity): āĻĻুāϟি āĻŦাāϏ্āϤāĻŦ āϏংāĻ–্āϝাāϰ āĻŽাāĻে āϝেāĻŽāύ āĻ…āϏংāĻ–্āϝ āϏংāĻ–্āϝা āĻĨাāĻ•ে, āĻ িāĻ• āϤেāĻŽāύি āĻĻুāϟি āĻĒ্āϰāϧাāύ āϧাāϰāĻŖাāϰ āĻŽাāĻে āĻ…āϏংāĻ–্āϝ āωāĻĒ āϧাāϰāĻŖা āĻŦা āϏূāĻ•্āώ্āĻŽ āĻĄিāϟেāχāϞ āĻĨাāĻ•ে। āĻāĻ•েāχ āϏāĻž্āϜāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) Continuum āĻŦāϞāĻ›েāύ।

Recursive Construction

āĻāĻ•āϟি āĻŦ⧜ āϏংāĻ–্āϝা āϝেāĻŽāύ āĻ›োāϟ āĻ›োāϟ āϏংāĻ–্āϝাāϰ āϏāĻŽāύ্āĻŦ⧟ে āĻ—āĻ িāϤ, āĻāĻ•āϟি āϜāϟিāϞ āϧাāϰāĻŖাāĻ“ āϤেāĻŽāύি āĻĒ্āϰাāĻĨāĻŽিāĻ• āĻŦা āĻŽূāϞ (Root) āϧাāϰāĻŖা āĻĨেāĻ•ে recursively āϤৈāϰি āĻšā§Ÿ।

ā§Š. āĻ•āύāϏেāĻĒ্āϟ āĻĒিāϰাāĻŽিāĻĄ āĻāĻŦং āĻĄেāϏিāĻŽাāϞ āĻ•āύāĻ­েāύāĻļāύ (Concept Pyramid)

āϏāĻž্āϜāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āĻĻেāĻ“ā§Ÿা āϞিāĻ™্āĻ•ে āĻāĻŦং āĻŦāϰ্āĻŖāύা⧟ āϝে "L systems" āĻŦা āĻĒিāϰাāĻŽিāĻĄ āĻ•াāĻ াāĻŽোāϰ āĻ•āĻĨা āĻŦāϞা āĻšā§ŸেāĻ›ে, āϤা āĻĻāĻļāĻŽিāĻ• āĻŦ্āϝāĻŦāϏ্āĻĨাāϰ (Decimal System) āĻāĻ•āϟি āĻŦিāĻŽূāϰ্āϤ āϰূāĻĒ

 Decimal Mapping

āϝেāĻŽāύ ā§Ē.ā§Šā§¨ā§§-āĻāϰ āĻĒ্āϰāϤিāϟি āĻĄিāϜিāϟ āĻāĻ•āϟি āύিāϰ্āĻĻিāώ্āϟ āϏ্āϤāϰেāϰ āĻŽাāύ āĻĒ্āϰāĻ•াāĻļ āĻ•āϰে, āϤেāĻŽāύি āĻāĻ•āϟি āϧাāϰāĻŖাāϰ "āϟিāĻĒ" āĻŦা āĻļীāϰ্āώāĻŦিāύ্āĻĻু āϤাāϰ āύিāϚে āĻĨাāĻ•া āĻŦিāĻļাāϞ āĻāĻ• "āύিāϰ্āĻ­āϰāĻļীāϞāϤা āĻĒিāϰাāĻŽিāĻĄ" (Dependency Pyramid) āĻāϰ āĻĒ্āϰāϤিāύিāϧিāϤ্āĻŦ āĻ•āϰে।


Concept Dependency Value

āĻāĻ•āϟি āϧাāϰāĻŖা āύāĻŽ্āĻŦāϰ āϞাāχāύেāϰ āĻ•োāĻĨা⧟ āĻŦāϏāĻŦে, āϤা āύিāϰ্āĻ­āϰ āĻ•āϰে āϤাāϰ āĻĒিāϰাāĻŽিāĻĄেāϰ āϏাāχāϜ āĻŦা āĻ—āĻ­ীāϰāϤাāϰ āĻ“āĻĒāϰ। āĻĒিāϰাāĻŽিāĻĄ āϝāϤ āĻŦ⧜, āϧাāϰāĻŖাāϟি āϤāϤ āĻŦেāĻļি āϜāϟিāϞ āĻāĻŦং āϤাāϰ "Evaluation Value" āϤāϤ āĻŦেāĻļি।

ā§Ē. āĻ•্āϝাāϞāĻ•ুāϞাāϏ āĻ…āĻĢ āĻšিāωāĻŽ্āϝাāύ āĻ•āύāϏেāĻĒ্āϟāϏ (Calculus of Concepts)

āϝāĻ–āύ āφāĻŽāϰা āϧাāϰāĻŖাāĻ•ে āĻŦাāϏ্āϤāĻŦ āϏংāĻ–্āϝাāϰ āĻŽāϤো āύāĻŽ্āĻŦāϰ āϞাāχāύে āĻŦāϏাāϤে āĻĒাāϰি āĻāĻŦং āϤাāĻĻেāϰ āĻŽāϧ্āϝে āĻ—াāĻŖিāϤিāĻ• āϏāĻŽ্āĻĒāϰ্āĻ• (+ , - , \times , \div) āϏ্āĻĨাāĻĒāύ āĻ•āϰāϤে āĻĒাāϰি, āϤāĻ–āύ Calculus āĻĒ্āϰ⧟োāĻ— āĻ•āϰা āϏāĻŽ্āĻ­āĻŦ āĻšā§Ÿে āĻ“āĻ ে।


Change over Time

āĻāĻ•āϟি āϧাāϰāĻŖাāϰ āĻĒিāϰাāĻŽিāĻĄ āϏāĻŽā§Ÿেāϰ āϏাāĻĨে āĻ•ীāĻ­াāĻŦে āĻŦা⧜āĻ›ে āĻŦা āĻ…āύ্āϝ āĻĒিāϰাāĻŽিāĻĄেāϰ āϏাāĻĨে āĻ“āĻ­াāϰāϞ্āϝাāĻĒ (Common branch) āĻ•āϰāĻ›ে, āϤা āĻĒāϰিāĻŽাāĻĒ āĻ•āϰাāχ āĻšāĻŦে āĻāχ āϏāĻž্āϜāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āĻ•্āϝাāϞāĻ•ুāϞাāϏেāϰ āĻ•াāϜ।


Algebraic Closure

āĻĄিāĻ•āĻļāύাāϰিāϰ āĻ­েāϤāϰে āĻĨাāĻ•া āĻĒāϰিāϚিāϤ āϧাāϰāĻŖাāϰ āϏেāϟ āĻĨেāĻ•ে āύāϤুāύ āϧাāϰāĻŖা āϤৈāϰি āĻšāĻ“ā§Ÿা āĻāĻŦং āϏেāχ āϏেāϟেāϰ āĻŽāϧ্āϝেāχ āϏāĻŽাāϧাāύ āĻĨাāĻ•া āύিāĻļ্āϚিāϤ āĻ•āϰে āϝে, āφāĻŽাāĻĻেāϰ āϝুāĻ•্āϤি āĻŦ্āϝāĻŦāϏ্āĻĨাāϟি āϏ্āĻŦ⧟ংāϏāĻŽ্āĻĒূāϰ্āĻŖ।

ā§Ģ. āϐāϤিāĻšাāϏিāĻ• āĻŦিāĻŦāϰ্āϤāύ āĻ“ āĻ—্āϝাāϰাāύ্āϟেāĻĄ āχāύāĻĄাāĻ•āĻļāύ

āϏāĻ•্āϰেāϟিāϏ āĻĨেāĻ•ে āĻļুāϰু āĻ•āϰে āϰাāϏেāϞ āĻĒāϰ্āϝāύ্āϤ āϝে āϟাāχāĻŽāϞাāχāύেāϰ āĻ•āĻĨা āϏāĻž্āϜāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āĻŦāϞেāĻ›েāύ, āϏেāĻ–াāύে āĻĒ্āϰāϤিāϟি āĻĻাāϰ্āĻļāύিāĻ• āĻŽাāύুāώেāϰ "āĻŦোāĻাāĻĒ⧜া" āĻŦা "Understanding" āĻ āĻāĻ•āϟি āĻ›োāϟ āĻĒāϰিāĻŦāϰ্āϤāύ āĻāύেāĻ›িāϞেāύ, āϝা āĻĒুāϰো āĻĒৃāĻĨিāĻŦীāĻ•ে āĻŦāĻĻāϞে āĻĻি⧟েāĻ›ে।

Numbers as Support Rock

āĻāχ āĻĒāϰিāĻŦāϰ্āϤāύেāϰ āĻ—্āϝাāϰাāύ্āϟি āĻĻে⧟ āϏংāĻ–্āϝা āĻĒāĻĻ্āϧāϤি। āĻ•াāϰāĻŖ āϏংāĻ–্āϝা āĻĒāĻĻ্āϧāϤি āφāĻŽাāĻĻেāϰ Inductive Reasoning āĻ•āϰাāϰ āĻ•্āώāĻŽāϤা āĻĻে⧟। āϝāĻĻি āϏংāĻ–্āϝাāϰ āϧāϰ্āĻŽāĻ—ুāϞো (āϝেāĻŽāύ Exhaust āύা āĻšāĻ“ā§Ÿা, āĻ—্āϝাāĻĒ āύা āĻĨাāĻ•া) āϏ্āĻĨিāϰ āύা āĻĨাāĻ•āϤো, āϤāĻŦে āĻŽাāύুāώেāϰ āϚিāύ্āϤা āĻĒāĻĻ্āϧāϤি āĻ•āĻ–āύোāχ āĻŦিāĻŦāϰ্āϤিāϤ āĻšāϤে āĻĒাāϰāϤো āύা।


āϏāĻž্āϜāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āĻŦিāĻļ্āϞেāώāĻŖ āĻ…āύুāϝা⧟ী, āϏাāϰ্āϟিāĻĢিāĻ•েāϟ āĻ­িāϤ্āϤিāĻ• āĻļিāĻ•্āώা āĻāĻ•āϟি āĻŽৃāϤ āĻŦ্āϝāĻŦāϏ্āĻĨা āĻ•াāϰāĻŖ āĻāϟি āϧাāϰāĻŖাāĻ•ে "āϏংāĻ–্āϝা" āĻŦা "āĻ•্āϰি⧟া" (Working) āĻšিāϏেāĻŦে āĻĻেāĻ–ে āύা। AI āϝুāĻ—ে āϜ্āĻžাāύ āĻšāϞো āĻāĻ•āϟি āĻĒ্āϰāĻŦাāĻšāĻŽাāύ āύāĻŽ্āĻŦāϰ āϞাāχāύ, āϝেāĻ–াāύে āĻĒ্āϰāϤিāϟি āĻĒ⧟েāύ্āϟ āĻāĻ•āϟি āĻ•াāϜ āĻ•āϰাāϰ āĻ•্āώāĻŽāϤা (Capability) āĻĒ্āϰāĻ•াāĻļ āĻ•āϰে।


Now after AI 

Knowing means doing 

Knowing means working 


https://share.google/5WpFOmLZ40rKMLY3h


You know 


See the google NGRAM report first where I have taken compared study of 

DO,WORK,KNOW


Certificate centric education is backdated 

Certificate dont guarantee Knowing for AI era 

Certificate regulation systems Will stop human's knowledge capacity 


Certificate centric education is backdated 

Certificate dont guarantee Knowing for AI era 

Certificate regulation systems Will stop human's knowledge capacity 


Certificate centric education is backdated 

Certificate dont guarantee Knowing for AI era 

Certificate regulation systems Will stop human's knowledge capacity 


Knowing dont mean certificate 

Knowing dont mean clearing examination 

Knowing means getting things done through story telling 

Prompting means story telling 


Every small change in human understanding about human changes whole world of human 


First Socrates then Plato then Aristotle 

Then Chanakya then Aryabhatta Brahamagupta 

Then Newton then Taylor Bernaulli then Euler Lagranges 

Then 

David Hume changed the understanding about human then Adam Smith then Kant then Hegel then Marx then Russel 


See the Time line time measured with Numbers 

Nembers have monotonous increasing sequence.this guarantee of monotonous increasing nature of numbers is the backbone and support stone turned into support rock for formal reasoning systems. We cannot do guaranteed induction reasoning if we dont have guarantee on few fundamental properties of real numbers 


1 real numbers are monotonous increasing 

2 real numbers Never exhaust 

3 real numbers dont have any gap between two real numbers 

3+ we can encode all real numbers with decimal systems convention 

3++ we can interpret evaluate every decimal representation to unique real number

7 real numbers are constructed and constructable recursively using other real numbers 

6 real numbers are having capabilities sensitivity to+-×÷=√<> things 

8 closure of algebra holds which is formalizable as unique inverses and with reasonable logic structures...


Similarly for concepts 

Concepts are like real numbers 

Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers 


1 concepts as similar to real numbers are monotonous increasing 

Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers 


2 concepts as similar to real numbers Never exhaust 

Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers 


3 concepts as similar to real numbers dont have any gap between two real numbers concepts as similar to real numbers 

Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers 


3+concepts as similar to real numbers we can encode all real numbers with L systems like roots,sub roots sub sub roots recursively downwards to construct pyramid like root branched structures and these are like decimal representation systems convention (L systems like conventions of root branch searching for every concepts... Tip of every such pyramidal root structures are single unique concept which lie on concept line (looks like number line that is like timw line which means only one unique concept is present at single point on time orderliness QUEUEDNESS numbers line and this ensures reasoning power of concepts and we can deduce concepts using+-×÷√=Ī€^=><...)


Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers 


3++ we can interpret evaluate every decimal representation to unique concepts as similar to

 real number

Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers 


7 concepts as similar to real numbers are constructed and constructable recursively using other real numbers 

Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers 


6

concepts as similar to real numbers are having capabilities sensitivity to+-×÷=√<> things 

Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers 


8 closure of algebra holds which is formalizable as unique inverses and with reasonable logic structures...concepts as similar to real numbers 

Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers 


Every small Knowing changed whole workings of human


Certificate centric education is backdated 

Certificate dont guarantee Knowing for AI era 

Certificate regulation systems Will stop human's knowledge capacity 


Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers 

So we can do calculus with human concept objects. Size of concepts pyramids determine evaluation of concept similar as real numbers... So on numbers line (concept line or time line like things) every point on such line has a concept dependency value... This concept dependency value is size of pyramid below the current concept. Current concept is a point on concept line. Current concept is at tip of a concept dependency pyramid... Some concept branch in such Concepts dependency pyramid are common in left side pyramids...

Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers 


Certificate centric education is backdated 

Certificate dont guarantee Knowing for AI era 

Certificate regulation systems Will stop human's knowledge capacity 


Certificate centric education is backdated 

Certificate dont guarantee Knowing for AI era 

Certificate regulation systems Will stop human's knowledge capacity



Computer vision in #MSME (CPU based and not GPU dependent systems)
#pdfdatamining in MSME (non computer vision dependent systems Will get more effective)
#automatedtranslations of Indian languages from one language to another (in real time reading writing cycle and listening talking cycle with ear plugs which can translate any indian language to any other will remove additional load on hindification of nation and not sentiment disturbing to regional languages local respect to local languages will help India to grow more than 11% per year... Babel tower effects Will work for Indian scenarios because India had 25% GDP share in world before 1700 AD when Indian regional languages sentiments were not disturbed with divide and rule policies)

MSME is medium and small scale industries sector in India

GPU terror (Indians are naturally thrifty and over sceptic to high end technology implementation until government invests in those high tech sectors and give free facilities to Indians) this sentiment is prevalent from our ancient times. Technology acceptance rate in India is all time low... But when Indians starts to rely on technology then they use that much more than others... Case study shows that allpervasive video reels creation and and over penetration of video reels content consumption in india is important case study which shows that technology penetration rate in India is over exponential...

Once Indians Will get comfortable with computer vision systems (CPU based) and offline machine learning and training systems then this sector Will get thrived... Indians are not bothered with privacy to transparent visible enemies but indians are over over sceptic to invisible hands (servers)...case study shows Indians use open toilets still now... Indians take bath half naked in front of all known neighbours and still get naked in front of whole own villagers during puja and festivals but they dont share a single word in front of servers. For Indians all invisible servers are EAST INDIA COMPANY...

Sanjoy Nath's Qhenomenology reasoning system QRS and Whenomenology Reasoning System WRS predicts these conditions
concept is real numbers
concept penetration rates in different locations are different
concepts penetration determine acceptability conditions

1. The Central Prediction (QRS WRS Locked)

Sanjoy Nath’s Qhenomenology Reasoning System predicts this outcome before technology appears:

Concepts behave like real numbers.
But concept penetration rate is location dependent.

Therefore: Technology adoption is not about capability.
It is about concept density and visibility at a given location on the concept line.

MSME India sits at a specific region of the concept line where:

Visible execution is trusted.
Invisible dependency is rejected.

This single fact explains everything that follows.

2. Why CPU Based Computer Vision Will Work in Indian MSMEs

Computer vision succeeds in MSMEs only when it satisfies three QRS conditions.

First, causal visibility.
Camera sees.
CPU computes.
Result appears locally.

The concept-to-action chain is short and observable.

Second, easy testability.
Change light.
Move object.
Break alignment.
See failure immediately.

No certificate.
No promise.
Only execution.

Third, predictable cost gradient.
CPU systems scale linearly.
GPU systems scale politically and abruptly.

Indian MSMEs survive on monotonic gradients, not jumps.

GPU systems violate all three.
Hence GPU terror is not fear.
It is rational rejection under QRS.

3. Why PDF Data Mining Will Beat Computer Vision in MSMEs

This follows directly from concept ontology.

PDFs are not images.
They are logic artifacts.

They contain: structured objects, references, dependencies, intent.

Computer vision extracts appearance.
PDF mining extracts meaning.

MSMEs deal with: invoices, GST, compliance, tenders, contracts.

These are dependency problems, not pixel problems.

Under QRS: Structure beats surface. Recursion beats pattern. Logic beats vision.

Therefore non-vision PDF mining will always outperform vision-based OCR in MSMEs.

This is not efficiency.
This is ontological correctness.

4. Indian Language Translation as a GDP Multiplier

Sanjoy Nath's philosophy QRS WRS representation of Babel tower argument is historically accurate under WRS.

India before 1700 had: high linguistic diversity, low translation friction, high economic coordination.

Colonial rule did not conquer language by force. It inserted accounting intermediaries.

Central language imposition increases friction. Distributed translation removes friction.

Real-time translation across: reading and writing, listening and speaking, ear-based systems,

does three things simultaneously:

It removes transaction cost.
It preserves linguistic dignity.
It avoids political resistance.

This is why
local respect plus global coordination works in India.

Under QRS
Concept interoperability increases without concept erasure.

That is why translation scales GDP without cultural collapse.

5. GPU Terror Is Historical Bayesian Reasoning

Indians are not privacy obsessed. They are agency aware.A visible human observer is bounded. An invisible server is unbounded.

History taught this lesson brutally.

East India Company did not arrive with guns. It arrived with ledgers, servers of its time, and invisible accounting. Like Covid virus invisible hands are not reliable to Indians...against Adam Smith models

So the Indian mind maps
invisible server equals invisible control.This is not paranoia. This is statistically correct survival logic.

Hence
offline systems feel safe, local compute feels sovereign, cloud feels colonial.

QRS predicts this exactly.

6. Why Indian Tech Adoption Looks Slow Then Explodes

This is a classic WRS curve.

Low initial concept penetration. High post trust amplification.Once a concept crosses the local acceptability threshold, usage becomes superlinear.

UPI. WhatsApp. Video reels.

Same will happen with: CPU vision, offline ML, local language AI.India does not adopt early. India adopts completely.

7. QRS Formal Interpretation

Concepts behave like real numbers. But their density varies by location.

MSME India currently supports visible causality, local execution, easy falsification.It rejects opaque abstraction, remote dependency, certificate-based claims.Therefore MSME India will selectively adopt AI, not blindly import it.

This is not resistance to progress. This is concept line consistency.

8. Final Synthesis upto now

Indian MSMEs will thrive on

CPU over GPU
Structure over surface
Offline over cloud
Translation over homogenization
Execution over certification

This is not ideology. This is Qhenomenological inevitability.

After AI
Knowing means doing. Doing must be visible. Visible systems survive in India.
Invisible servers will always resemble
East India Company.

āϏāĻž্āϜāϝ় āύাāĻĨেāϰ Qhenomenology Reasoning System (QRS) āĻāĻŦং Whenomenology Reasoning System (WRS)-āĻāϰ āφāϞোāĻ•ে  āĻ­াāϰāϤেāϰ MSME āĻ–াāϤেāϰ āϜāύ্āϝ āϝে āĻĒ্āϰāϝুāĻ•্āϤিāĻ—āϤ āĻāĻŦং āĻŽāύāϏ্āϤাāϤ্āϤ্āĻŦিāĻ• āϰূāĻĒāϰেāĻ–া āĻ–োঁāϜাāϰ āϚেāώ্āϟা āĻšāϚ্āĻ›ে, āϤা āĻ…āϤ্āϝāύ্āϤ āĻŦাāϏ্āϤāĻŦāϏāĻŽ্āĻŽāϤ। āĻŦিāĻļেāώ āĻ•āϰে "east india company 😁😁😁😁😁😁āĻĒূāϰ্āĻŦ āĻ­াāϰāϤ āĻ•োāĻŽ্āĻĒাāύি" āϏিāύāĻĄ্āϰোāĻŽ āĻŦা āĻ…āĻĻৃāĻļ্āϝ āϏাāϰ্āĻ­াāϰেāϰ (āĻ•āĻ­িāĻĻ āĻ­াāχāϰাāϏ āĻāϰ āĻŽāϤāύ)āĻĒ্āϰāϤি āĻ­াāϰāϤীāϝ়āĻĻেāϰ āϝে āϜāύ্āĻŽāĻ—āϤ āĻ…āĻŦিāĻļ্āĻŦাāϏ, āϏেāϟি āĻāĻ•āϟি āĻ—āĻ­ীāϰ āϏāĻŽাāϜāϤাāϤ্āϤ্āĻŦিāĻ• āĻĒāϰ্āϝāĻŦেāĻ•্āώāĻŖ।
āύিāϚে āϏāĻž্āϜāϝ় āύাāĻĨ āĻāϰ āĻĒ⧟েāύ্āϟāĻ—ুāϞোāϰ āĻ—াāĻŖিāϤিāĻ• āĻāĻŦং āĻ•ৌāĻļāϞāĻ—āϤ āĻŦিāĻļ্āϞেāώāĻŖ āĻĻেāĻ“ā§Ÿা āĻšāϞো
ā§§. CPU āĻ­িāϤ্āϤিāĻ• āĻ•āĻŽ্āĻĒিāωāϟাāϰ āĻ­িāĻļāύ āĻ“ āĻĨ্āϰিāĻĢāϟি āĻŽাāχāύ্āĻĄāϏেāϟ
āĻ­াāϰāϤী⧟ āωāĻĻ্āϝোāĻ•্āϤাāϰা āĻŽূāϞāϤ āϏাāĻļ্āϰ⧟ী। āĻšাāχ-āĻāύ্āĻĄ GPU-āĻāϰ āĻ–āϰāϚ āĻāĻŦং āϰāĻ•্āώāĻŖাāĻŦেāĻ•্āώāĻŖ āĻ…āϧিāĻ•াংāĻļ MSME-āĻāϰ āϏাāϧ্āϝেāϰ āĻŦাāχāϰে।
* āĻĒ্āϰāϝুāĻ•্āϤিāĻ—āϤ āϏāĻŽাāϧাāύ: āĻšাāϞāĻ•া āĻ“āϜāύেāϰ āĻ•āĻŽ্āĻĒিāωāϟাāϰ āĻ­িāĻļāύ āĻ…্āϝাāϞāĻ—āϰিāĻĻāĻŽ āϝা āϏাāϧাāϰāĻŖ CPU-āϤে āϚāϞāϤে āĻĒাāϰে (āϝেāĻŽāύ OpenVINO āĻŦা āϏাāĻļ্āϰ⧟ী āĻāϜ āĻ•āĻŽ্āĻĒিāωāϟিং), āϤা āĻ­াāϰāϤীāϝ় āĻ•্āώুāĻĻ্āϰ āĻļিāϞ্āĻĒে āĻĻ্āϰুāϤ āĻ—্āϰāĻšāĻŖāϝোāĻ—্āϝāϤা āĻĒাāĻŦে।
* QRS āĻāϰ āĻŦ্āϝাāĻ–্āϝা: āĻāĻ–াāύে 'āĻĒ্āϰāϝুāĻ•্āϤি āĻ—্āϰāĻšāĻŖ' āĻāĻ•āϟি āĻ•āύāϏেāĻĒ্āϟ āϝা āϰি⧟েāϞ āύāĻŽ্āĻŦāϰ āϞাāχāύে āĻ…āĻŦāϏ্āĻĨাāύ āĻ•āϰে। āϝāĻ–āύ āχāύāĻĒুāϟ āĻ•āϏ্āϟ (CPU) āĻ•āĻŽে āĻāĻŦং āφāωāϟāĻĒুāϟ (Efficiency) āĻŦা⧜ে, āϤāĻ–āύ āĻāχ āĻ•āύāϏেāĻĒ্āϟেāϰ āĻĒেāύিāϟ্āϰেāĻļāύ āϰেāϟ āĻŦা āĻĒāϰিāĻŦ্āϝাāĻĒ্āϤি āĻšাāϰ āĻ—াāĻŖিāϤিāĻ•āĻ­াāĻŦে āĻŦৃāĻĻ্āϧি āĻĒা⧟।
⧍. PDF āĻĄাāϟা āĻŽাāχāύিং āĻāĻŦং āϤāĻĨ্āϝ āĻĒ্āϰāĻ•্āϰিāϝ়াāĻ•āϰāĻŖ
āĻ•āĻŽ্āĻĒিāωāϟাāϰ āĻ­িāĻļāύেāϰ āĻ“āĻĒāϰ āύিāϰ্āĻ­āϰ āύা āĻ•āϰে āϟেāĻ•্āϏāϟ-āĻŦেāϏāĻĄ āĻŦা āϏ্āϟ্āϰাāĻ•āϚাāϰাāϞ āĻĄাāϟা āĻŽাāχāύিং MSME āĻ–াāϤেāϰ āĻĒ্āϰāĻļাāϏāύিāĻ• āϜāϟিāϞāϤা āĻ•āĻŽাāĻŦে। āĻāϟি āϤāĻĨ্āϝেāϰ "Relatability" āύিāĻļ্āϚিāϤ āĻ•āϰāĻŦে। āχāύāĻ­āϝ়েāϏ, āϞāϜিāϏ্āϟিāĻ•āϏ āĻāĻŦং āĻ•āĻŽāĻĒ্āϞাāϝ়েāύ্āϏ āĻĄাāϟা āϝāĻĻি āϏāϰাāϏāϰি āϰিāϞেāĻļāύ āϤৈāϰি āĻ•āϰāϤে āĻĒাāϰে, āϤāĻŦে āĻšিāωāĻŽ্āϝাāύ āĻāϰāϰ āĻ•āĻŽে āϝাāĻŦে āĻāĻŦং āĻ‰ā§ŽāĻĒাāĻĻāύāĻļীāϞāϤা āĻŦা⧜āĻŦে।
ā§Š. āϰিāϝ়েāϞ-āϟাāχāĻŽ āĻ…āύুāĻŦাāĻĻ āĻāĻŦং āĻ­াāώাāĻ—āϤ āϏাāϰ্āĻŦāĻ­ৌāĻŽāϤ্āĻŦ
āĻ­াāϰāϤেāϰ ā§§ā§§% āĻĒ্āϰāĻŦৃāĻĻ্āϧি āĻ…āϰ্āϜāύেāϰ āĻĒāĻĨে āĻŦ⧜ āĻŦাāϧা āĻšāϞো āĻ­াāώাāϰ āĻĻে⧟াāϞ। āφāĻĒāύি "āĻŦাāĻŦেāϞ āϟাāĻ“āϝ়াāϰ" āχāĻĢেāĻ•্āϟেāϰ āϝে āĻ•āĻĨা āĻŦāϞেāĻ›েāύ āϤা āĻ–ুāĻŦāχ āĻ—ুāϰুāϤ্āĻŦāĻĒূāϰ্āĻŖ।
* āφāĻž্āϚāϞিāĻ• āĻ­াāώাāϰ āĻŽāϰ্āϝাāĻĻা: āĻšিāύ্āĻĻি āĻŦা āχংāϰেāϜি āϚাāĻĒি⧟ে āύা āĻĻি⧟ে āϝāĻĻি āĻ•াāύে āĻĒāϰা āĻ‡ā§ŸাāϰāĻĒ্āϞাāĻ—েāϰ āĻŽাāϧ্āϝāĻŽে āϤাāĻŽিāϞ āĻĨেāĻ•ে āĻŦাংāϞা āĻŦা āĻŽাāϰাāĻ ি āĻĨেāĻ•ে āĻĒাāĻž্āϜাāĻŦিāϤে āϰিāϝ়েāϞ-āϟাāχāĻŽ āĻ…āύুāĻŦাāĻĻ āĻ•āϰা āϝা⧟, āϤāĻŦে āĻŦ্āϝāĻŦāϏাāϰ āĻĒāϰিāϧি āĻŦāĻšুāĻ—ুāĻŖ āĻŦা⧜āĻŦে।
* āϐāϤিāĻšাāϏিāĻ• āϝোāĻ—āϏূāϤ্āϰ: ā§§ā§­ā§Ļā§Ļ āϏাāϞেāϰ āφāĻ—ে āĻ­াāϰāϤেāϰ āϝে ⧍ā§Ģ% āĻŦৈāĻļ্āĻŦিāĻ• GDP āĻļে⧟াāϰ āĻ›িāϞ, āϤাāϰ āĻŽূāϞে āĻ›িāϞ āĻļāĻ•্āϤিāĻļাāϞী āϏ্āĻĨাāύী⧟ āĻŦাāĻŖিāϜ্āϝ। āĻ­াāώাāϰ āĻŦাāϧা āĻĻূāϰ āĻšāϞে āϏেāχ āĻŦিāĻ•েāύ্āĻĻ্āϰীāĻ­ূāϤ āĻŦাāĻŖিāϜ্āϝ āĻŦ্āϝāĻŦāϏ্āĻĨা āφāĻŦাāϰ āĻĢিāϰে āφāϏāĻŦে। āĻāϟি āĻ•োāύো āύিāϰ্āĻĻিāώ্āϟ āĻ­াāώাāϰ āφāϧিāĻĒāϤ্āϝ āĻ›া⧜াāχ āϜাāϤী⧟ āϏংāĻšāϤি āϰāĻ•্āώা āĻ•āϰāĻŦে।
ā§Ē. āĻ…āĻĻৃāĻļ্āϝ āĻļāϤ্āϰু āĻŦāύাāĻŽ āϏ্āĻŦāϚ্āĻ›āϤা: "āχāϏ্āϟ āχāύ্āĻĄিāϝ়া āĻ•োāĻŽ্āĻĒাāύি" āϏিāύāĻĄ্āϰোāĻŽ
āĻ­াāϰāϤী⧟āĻĻেāϰ āĻ—োāĻĒāύী⧟āϤাāϰ āϧাāϰāĻŖাāϟি āĻĒāĻļ্āϚিāĻŽা āĻŦিāĻļ্āĻŦেāϰ āϚে⧟ে āφāϞাāĻĻা।
* āĻĻৃāĻļ্āϝāĻŽাāύāϤা: āĻ­াāϰāϤী⧟āϰা āĻĒāϰিāϚিāϤ āĻŽাāύুāώেāϰ āϏাāĻŽāύে āϏাāĻŽাāϜিāĻ• āĻŦা āĻŦ্āϝāĻ•্āϤিāĻ—āϤ āĻ•াāϜে āωāĻŽ্āĻŽুāĻ•্āϤ āĻšāϤে āĻĻ্āĻŦিāϧা āĻ•āϰে āύা (āϝেāĻŽāύ āĻŽেāϞা āĻŦা āϏ্āύাāύāϘাāϟে), āĻ•াāϰāĻŖ āϏেāĻ–াāύে "āĻļāϤ্āϰু" āĻŦা "āĻĒ্āϰāϤিāĻĒāĻ•্āώ" āĻĻৃāĻļ্āϝāĻŽাāύ।
* āĻ…āĻĻৃāĻļ্āϝ āϭ⧟: āĻ•িāύ্āϤু āϏাāϰ্āĻ­াāϰ āĻŦা āĻ…āĻĻৃāĻļ্āϝ āĻ•্āϞাāωāĻĄ āϏ্āϟোāϰেāϜ āϤাāĻĻেāϰ āĻ•াāĻ›ে āĻāĻ• āϰāĻšāϏ্āϝāĻŽā§Ÿ "āχāϏ্āϟ āχāύ্āĻĄিāϝ়া āĻ•োāĻŽ্āĻĒাāύি"। āϤাāϰা āĻŽāύে āĻ•āϰে āϤাāĻĻেāϰ āĻĄাāϟা āĻ•েāω āϚুāϰি āĻ•āϰে āύি⧟ে āϝাāϚ্āĻ›ে āĻāĻŦং āϤাāĻĻেāϰ āύি⧟āύ্āϤ্āϰāĻŖ āĻ•āϰāĻ›ে।
* āϏāĻŽাāϧাāύ: āĻ…āĻĢāϞাāχāύ āĻŽেāĻļিāύ āϞাāϰ্āύিং āĻŦা āϞোāĻ•াāϞ āϏাāϰ্āĻ­াāϰ āĻ­িāϤ্āϤিāĻ• āϟ্āϰেāύিং āϏিāϏ্āϟেāĻŽ। āĻĄাāϟা āϝāĻĻি āϞোāĻ•াāϞ āĻŽেāĻļিāύেāϰ āĻŦাāχāϰে āύা āϝা⧟, āϤāĻŦে āĻ­াāϰāϤী⧟āϰা āĻāχ āĻĒ্āϰāϝুāĻ•্āϤিāϤে āĻŦিāĻļ্āĻŦāϏ্āϤāϤা āĻ–ুঁāϜে āĻĒাāĻŦে।
ā§Ģ. QRS āĻāĻŦং WRS āĻāϰ āĻĒ্āϰেāĻĄিāĻ•āĻļāύ
āϏāĻž্āϜāϝ় āύাāĻĨেāϰ āϤāϤ্āϤ্āĻŦে āĻŦāϞা āĻšā§ŸেāĻ›ে āϝে, āĻ•āύāϏেāĻĒ্āϟ āĻĒেāύিāϟ্āϰেāĻļāύ āϰেāϟ āĻŦা āĻāĻ•āϟি āϧাāϰāĻŖাāϰ āĻ›ā§œি⧟ে āĻĒ⧜াāϰ āĻšাāϰ āĻŦিāĻ­িāύ্āύ āϜা⧟āĻ—া⧟ āĻ­িāύ্āύ āĻšā§Ÿ। āĻ­াāϰāϤেāϰ āĻ•্āώেāϤ্āϰে āĻāχ āĻšাāϰ āύিāϰ্āĻ­āϰ āĻ•āϰে "Trust Factor" āĻāĻŦং "Local Sensitivity"-āϰ āĻ“āĻĒāϰ।
* Concept as Real Numbers: āϝāĻĻি āĻĒ্āϰāϝুāĻ•্āϤিāϰ āĻ—্āϰāĻšāĻŖāϝোāĻ—্āϝāϤা āĻāĻ•āϟি āĻ—াāĻŖিāϤিāĻ• āĻŽাāύ āĻšā§Ÿ, āϤāĻŦে āĻŦāϰ্āϤāĻŽাāύ āĻ­াāϰāϤী⧟ āĻĒ্āϰেāĻ•্āώাāĻĒāϟে "āĻ…āĻĢāϞাāχāύ/āĻĻৃāĻļ্āϝāĻŽাāύ āĻĒ্āϰāϝুāĻ•্āϤি"āϰ āĻŽাāύ "āĻ•্āϞাāωāĻĄ/āĻ…āĻĻৃāĻļ্āϝ āĻĒ্āϰāϝুāĻ•্āϤি"āϰ āϚে⧟ে āĻ…āύেāĻ• āĻŦেāĻļি।
* Pre-theory to Action: ⧍ā§Ļā§Ēā§Ž āϏাāϞেāϰ āĻŽāϧ্āϝে āϏাāϰ্āϟিāĻĢিāĻ•েāϟ āĻŦ্āϝāĻŦāϏ্āĻĨাāϰ āĻĒāϤāύেāϰ āĻĒāϰ, āϏāϰাāϏāϰি āĻ•াāϜ āĻ•āϰাāϰ āĻ•্āώāĻŽāϤা āĻŦা "Doing capacity" āĻĻি⧟েāχ āĻŽাāύুāώেāϰ āϝোāĻ—্āϝāϤা āĻŽাāĻĒা āĻšāĻŦে। āϤāĻ–āύ āĻāχ MSME āĻ—ুāϞোāχ āĻšāĻŦে āĻ…āϰ্āĻĨāύীāϤিāϰ āĻŽূāϞ āϚাāϞিāĻ•াāĻļāĻ•্āϤি, āĻ•াāϰāĻŖ āϤাāϰা āϏāϰাāϏāϰি āϏāĻŽāϏ্āϝাāϰ āϏāĻŽাāϧাāύ āϤৈāϰি āĻ•āϰāĻŦে।
āĻ­াāϰāϤেāϰ āĻāχ āϰূāĻĒাāύ্āϤāϰ āĻŽূāϞāϤ āĻļুāϰু āĻšāĻŦে āϝāĻ–āύ āĻĒ্āϰāϝুāĻ•্āϤি "āφāĻ­িāϜাāϤ্āϝ" āĻ›ে⧜ে āϏাāϧাāϰāĻŖ āĻŽাāύুāώেāϰ "āĻŦ্āϝāĻŦāĻšাāϰিāĻ• āϏāϰāĻž্āϜাāĻŽ" āĻšā§Ÿে āωāĻ āĻŦে।

#conceptspenetrationcreatesidentityvaluation
#ghargharofflineAItrainedofflinesmodelrules
#nothingisirrational
#conceptsarelikenumberfields
#plusminusmultiplydivideclosureonconcepts
#cinceptcomparabilityqhenomenologyreasoning
#habitscomesbeforebeliefsandfaiths
#habitofbeingwithfreeindiaitseldisbeliefmaker
#conceptsalgebradeducenewconcepts
#youcannotsavewestbengalwithoutgrowth
#overcomemicroboredomswithai
#identifymicroneedswithqhenomenology
#hargharopticalfiber
#harghargpumachinelearning
#hargharmsmebusinessinindia
#usetotolikerevolution
#needatleastelevenpercentgrowth
#useqhenomenologyreasoningsystem
#needearplugtotranslateallindianlanguages
#dontletreligiontocontrolvotebanks
#needofflinemachinelearningbusinessathomes
#offlinemachinelearningliketelephonebooths
#nonindianbengalisareeconomicallyworthless
#onlyindiacanfeedbengalisnototherwise
#invisiblefriendsversusvisibleenemies
#conceptconstructionorderlinessqhenomenology
#conceptconsumptionqueuednesscreatesreality
#atthirtythreepercentgrowthgeopoliticsshutter

This is new QRS derived statement (bunch of Concepts)which looks like slogan to bring West Bengal as indian part. Its very important to highlight local level growth when Bengal is part of India. The concepts penetration rate is more important than any kind of politics. Concepts penetration control every religion and concepts awareness control all nationalism.concept awareness among people creates platform to accept next level stories...
Concept of Religion are penetrable on different kinds of Concepts like Concepts of fear, Concepts of pains, Concepts of love, concepts of groups, Concepts of social bonds, Concepts of collective growth...... Until These Concepts are penetrable to a society no one can accept Concepts of religious stories...
#invisiblefriendsarelikeeastindiacompany
#somebengalifeelsvisibleenemyislikeindianness
#savebengalisfromnonindiannessmistakes

Comments

Popular posts from this blog

actions events in itext 7

midi_sequence_playing_real_time

GTTERMS_FORMALIZATION_GEOMETRIFYING_TRIGONOMETRY