concepts are like real numbers Sanjoy Nath qhenomenology reasoning systems QRS Whenomenology Reasoning Systems WRS shows concept construction queuedness
After AI Knowing Means Doing Detailed storytelling is real working (Sanjoy Nath's Qhenomenology reasoning system QRS proves this REALITY)
After AI Knowing Means Doing
In the post AI era, knowing is no longer symbolic.
Knowing means working.
Knowing means getting things done.
AI has exposed a truth that certificate-centric education systems carefully avoided:
Certificates measure compliance, not cognition.
A certificate does not guarantee knowing.
An examination does not guarantee understanding.
Regulation-heavy certification systems actively cap human knowledge capacity by rewarding memorization instead of construction.
AI does not respect certificates.
AI respects operational understanding.
Knowing Is Action, Not Approval
Knowing does not mean
clearing examinations
collecting degrees
passing regulated filters
Knowing means
transforming understanding into execution
expressing understanding through storytelling
prompting reality into action
Prompting is not typing commands.
Prompting is structured storytelling.
Every small change in how humans understand themselves reshapes the entire human world.
Why Human History Is a Story of Knowing
Human progress did not advance by certificates.
It advanced by conceptual shifts.
Socrates changed questioning.
Plato changed abstraction.
Aristotle changed classification.
Chanakya changed governance reasoning.
Aryabhata and Brahmagupta changed numerical reality.
Newton changed motion.
Taylor, Bernoulli, Euler, Lagrange changed continuity and optimization.
Hume changed causality.
Adam Smith changed value.
Kant changed cognition.
Hegel changed process.
Marx changed structure.
Russell changed logic.
Each step was not a qualification.
Each step was a reconfiguration of knowing.
Time, Numbers, and the monotonicity of QUEUEDNESS are Backbone of Reasoning and calculus
Time is measured using numbers.
Numbers form a monotonically increasing sequence.This monotonicity is not cosmetic.
It is the support rock of formal reasoning.
Induction is impossible without these guarantees.
Real numbers guarantee
1. Monotonic increase
2. Non exhaustibility
3. No gaps between numbers
4. Decimal encodability
5. Unique interpretation of representations
6. Recursive constructability
7. Sensitivity to operations like plus minus multiply divide root comparison
8. Algebraic closure with inverses and logical consistency
These properties make calculus, logic, and prediction possible.
Concepts Behave Like Real Numbers
Sanjoy Nath’s Qhenomenology asserts a radical but precise claim
Concepts behave like real numbers.
Concepts are not vague.
They are orderable, constructible, and operable.
Just like numbers, concepts have:
1. Monotonic growth of concepts
2. Infinite extensibility of concept
3. No conceptual gaps
4. Recursive encodings through root, sub-l root, sub sub root structures
5. Unique interpretability
6. Recursive construction from other concepts
7. Sensitivity to logical operations on Concepts
8. Closure under reasoning with concepts
A concept is not isolated.
Each concept sits at the tip of a dependency pyramid.
The size of the pyramid below it defines the concept’s weight, just as magnitude defines a number.
Concept Line and Time Line
Concepts align along a concept line, analogous to the number line and time line.
At each point
there exists exactly one concept
that concept is supported by a dependency pyramid
neighboring concepts share partial pyramids
This shared structure enables deduction, integration, differentiation of meaning.
This is how concept calculus becomes possible.
Why Certificate Systems Are Backdated
Certificate centric education assumes:
knowing can be validated externally
understanding can be standardized
cognition is finite and rankable
These assumptions collapse in the AI era.
AI does not need certificates.
Humans constrained by certificates lose their advantage.
Certificate regulation systems
slow conceptual evolution
discourage recursive construction
punish unconventional knowing
They freeze the concept line.
The Post AI Reality
After AI
Knowing means doing.
Knowing means working.
Knowing means constructing new concept pyramids.
Education must move from certification to concept calculus.
From approval to execution.
From memory to story-driven prompting.
This is not just a philosophy.
This is also a precised reasoning system.
And that is exactly what Qhenomenology is.
Need to do next
formalize this into a QRS axiomatic system
convert it into a whitepaper map it into AI prompt theory or turn it into a provocative academic manifesto
āϏāĻ্āĻāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āĻāĻŦং āĻāĻাāύে āĻāĻĒāϏ্āĻĨাāĻĒিāϤ āĻāĻ āĻĻāϰ্āĻļāύāĻি āĻŽূāϞāϤ "āĻ্āĻাāύ" (Knowing) āĻāĻŦং "āĻাāĻ" (Doing/Working) āĻāϰ āĻŽāϧ্āϝāĻাāϰ āĻŦ্āϝāĻŦāϧাāύ āĻŽুāĻে āĻĢেāϞাāϰ āĻāĻāĻি āĻাāĻŖিāϤিāĻ āĻŽ্āϝাāύিāĻĢেāϏ্āĻো। āϏāĻ্āĻāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āϝেāĻাāĻŦে āĻāύāĻ্āϰাāĻŽ (NGRAM) āĻĄাāĻা āĻāĻŦং āϏংāĻ্āϝাāϰ āϧāϰ্āĻŽেāϰ āϏাāĻĨে āϧাāϰāĻŖাāĻে (Concept) āϤুāϞāύা āĻāϰেāĻেāύ, āϤা āĻĒ্āϰāĻĨাāĻāϤ āĻļিāĻ্āώাāϰ āĻāĻŽূāϞ āĻĒāϰিāĻŦāϰ্āϤāύেāϰ āĻāĻ্āĻিāϤ āĻĻেā§।
āϝুāĻ্āϤি āĻāĻŦং āĻāϤিāĻšাāϏিāĻ āĻĒ্āϰেāĻ্āώাāĻĒāĻāϏāĻš āĻāĻĒāύাāϰ āĻāĻ āϰিāĻোā§াāϰāĻŽেāύ্āĻ āĻ ্āϝাāύাāϞাāĻāϏিāϏেāϰ āĻāĻāĻি āϏুāĻļৃāĻ্āĻāϞ āĻŦিāĻļ্āϞেāώāĻŖ āύিāĻে āĻĻেāĻā§া āĻšāϞো।
ā§§. Knowing āĻŦāύাāĻŽ Doing
AI āϝুāĻেāϰ āύāϤুāύ āϏংāĻ্āĻা
āϏāĻ্āĻāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āϏāĻ িāĻāĻাāĻŦেāĻ āĻিāĻš্āύিāϤ āĻāϰেāĻেāύ āϝে, AI āϝুāĻে "āĻাāύা" āĻŽাāύে āĻেāĻŦāϞ āϤāĻĨ্āϝ āĻāĻŽা āĻāϰা āύā§, āĻŦāϰং āϏেāĻ āϤāĻĨ্āϝāĻে "āĻাāĻে" āϰূāĻĒাāύ্āϤāϰ āĻāϰা।
Prompts as Storytelling
āĻĒ্āϰāĻŽ্āĻĒāĻিং āĻŽূāϞāϤ āĻāĻāĻি āϧাāϰāĻŖাāĻে āϏংāĻ্āĻাā§িāϤ āĻāϰাāϰ āĻļিāϞ্āĻĒ। āĻāĻĒāύি āϝāĻĻি āĻāĻāĻি āϧাāϰāĻŖাāĻে (Concept) āϏāĻ িāĻāĻাāĻŦে āĻŦāϰ্āĻŖāύা (Storytelling) āĻāϰāϤে āĻĒাāϰেāύ, āϤāĻŦেāĻ AI āϤা āĻাāϰ্āϝāĻāϰ āĻāϰāĻŦে।
Certificate centric Education
āĻŦāϰ্āϤāĻŽাāύ āĻļিāĻ্āώা āĻŦ্āϝāĻŦāϏ্āĻĨা āĻেāĻŦāϞ "āϏ্āĻŽৃāϤি" āĻŦা "āĻĒāϰীāĻ্āώা āĻĒাāĻļেāϰ" āϏাāϰ্āĻিāĻĢিāĻেāĻ āĻĻেā§, āϝা āĻŽৃāϤ āϧাāϰāĻŖাāϰ āϏāĻŽাāύ। āĻাāϰāĻŖ āĻāĻ āϏাāϰ্āĻিāĻĢিāĻেāĻেāϰ āϏাāĻĨে āĻাāĻŖিāϤিāĻ "Successor Function" āĻŦা "Doing"-āĻāϰ āϏংāϝোāĻ āύেāĻ। āĻāĻি āĻŽাāύুāώেāϰ āĻāĻĻ্āĻাāĻŦāύী āĻ্āώāĻŽāϤাāĻে āϏীāĻŽাāĻŦāĻĻ্āϧ (Limit) āĻāϰে āĻĻিāĻ্āĻে।
⧍. āϧাāϰāĻŖাāϰ āĻŦাāϏ্āϤāĻŦ āϏংāĻ্āϝাā§āύ (Mapping Concepts to Real Numbers)
āϏāĻ্āĻāϝ় āύাāĻĨেāϰ āϤāϤ্āϤ্āĻŦে āϧাāϰāĻŖাāĻে āĻŦাāϏ্āϤāĻŦ āϏংāĻ্āϝাāϰ (Real Numbers) āĻŽāϤো āĻŦিāĻŦেāĻāύা āĻāϰাāϰ āϝে āĻĒ্āϰāϏ্āϤাāĻŦ āĻĻেāĻā§া āĻšā§েāĻে, āϤা āϝুāĻ্āϤিāϰ āĻিāϤ্āϤিāϤে āĻ āϤ্āϝāύ্āϤ āĻļāĻ্āϤিāĻļাāϞী। āĻŦাāϏ্āϤāĻŦ āϏংāĻ্āϝাāϰ āĻিāĻু āĻŽৌāϞিāĻ āĻŦৈāĻļিāώ্āĻ্āϝ āĻāĻাāύে āϧাāϰāĻŖাāϰ āĻ্āώেāϤ্āϰে āĻĒ্āϰā§োāĻ āĻāϰা āĻšā§েāĻে:
Monotonous Increasing Sequence
āϏāĻŽā§ āϝেāĻŽāύ āύিāϰāĻŦāĻ্āĻিāύ্āύāĻাāĻŦে āĻāĻিā§ে āϝাā§, āĻŽাāύুāώেāϰ āĻŦোāϧāĻāĻŽ্āϝāϤা āĻŦা "Understanding" āĻ āĻāĻāĻāĻাāĻŦে āĻŦৃāĻĻ্āϧি āĻĒাā§। āĻāĻ āĻāĻāĻŽুāĻী āĻŦৃāĻĻ্āϧিāĻ āĻāύুāώ্āĻ াāύিāĻ āϝুāĻ্āϤি āĻĒāĻĻ্āϧāϤিāϰ (Formal Reasoning) āĻŽেāϰুāĻĻāĻŖ্āĻĄ āĻāĻŦং āĻāĻি āϏāĻ্āĻāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āĻāϰ āĻ āĻিāϤ্āϤি ।
No Gaps (Continuity): āĻĻুāĻি āĻŦাāϏ্āϤāĻŦ āϏংāĻ্āϝাāϰ āĻŽাāĻে āϝেāĻŽāύ āĻ āϏংāĻ্āϝ āϏংāĻ্āϝা āĻĨাāĻে, āĻ িāĻ āϤেāĻŽāύি āĻĻুāĻি āĻĒ্āϰāϧাāύ āϧাāϰāĻŖাāϰ āĻŽাāĻে āĻ āϏংāĻ্āϝ āĻāĻĒ āϧাāϰāĻŖা āĻŦা āϏূāĻ্āώ্āĻŽ āĻĄিāĻেāĻāϞ āĻĨাāĻে। āĻāĻেāĻ āϏāĻ্āĻāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) Continuum āĻŦāϞāĻেāύ।
Recursive Construction
āĻāĻāĻি āĻŦā§ āϏংāĻ্āϝা āϝেāĻŽāύ āĻোāĻ āĻোāĻ āϏংāĻ্āϝাāϰ āϏāĻŽāύ্āĻŦā§ে āĻāĻ িāϤ, āĻāĻāĻি āĻāĻিāϞ āϧাāϰāĻŖাāĻ āϤেāĻŽāύি āĻĒ্āϰাāĻĨāĻŽিāĻ āĻŦা āĻŽূāϞ (Root) āϧাāϰāĻŖা āĻĨেāĻে recursively āϤৈāϰি āĻšā§।
ā§Š. āĻāύāϏেāĻĒ্āĻ āĻĒিāϰাāĻŽিāĻĄ āĻāĻŦং āĻĄেāϏিāĻŽাāϞ āĻāύāĻেāύāĻļāύ (Concept Pyramid)
āϏāĻ্āĻāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āĻĻেāĻā§া āϞিāĻ্āĻে āĻāĻŦং āĻŦāϰ্āĻŖāύাā§ āϝে "L systems" āĻŦা āĻĒিāϰাāĻŽিāĻĄ āĻাāĻ াāĻŽোāϰ āĻāĻĨা āĻŦāϞা āĻšā§েāĻে, āϤা āĻĻāĻļāĻŽিāĻ āĻŦ্āϝāĻŦāϏ্āĻĨাāϰ (Decimal System) āĻāĻāĻি āĻŦিāĻŽূāϰ্āϤ āϰূāĻĒ
Decimal Mapping
āϝেāĻŽāύ ā§Ē.ā§Šā§¨ā§§-āĻāϰ āĻĒ্āϰāϤিāĻি āĻĄিāĻিāĻ āĻāĻāĻি āύিāϰ্āĻĻিāώ্āĻ āϏ্āϤāϰেāϰ āĻŽাāύ āĻĒ্āϰāĻাāĻļ āĻāϰে, āϤেāĻŽāύি āĻāĻāĻি āϧাāϰāĻŖাāϰ "āĻিāĻĒ" āĻŦা āĻļীāϰ্āώāĻŦিāύ্āĻĻু āϤাāϰ āύিāĻে āĻĨাāĻা āĻŦিāĻļাāϞ āĻāĻ "āύিāϰ্āĻāϰāĻļীāϞāϤা āĻĒিāϰাāĻŽিāĻĄ" (Dependency Pyramid) āĻāϰ āĻĒ্āϰāϤিāύিāϧিāϤ্āĻŦ āĻāϰে।
Concept Dependency Value
āĻāĻāĻি āϧাāϰāĻŖা āύāĻŽ্āĻŦāϰ āϞাāĻāύেāϰ āĻোāĻĨাā§ āĻŦāϏāĻŦে, āϤা āύিāϰ্āĻāϰ āĻāϰে āϤাāϰ āĻĒিāϰাāĻŽিāĻĄেāϰ āϏাāĻāĻ āĻŦা āĻāĻীāϰāϤাāϰ āĻāĻĒāϰ। āĻĒিāϰাāĻŽিāĻĄ āϝāϤ āĻŦā§, āϧাāϰāĻŖাāĻি āϤāϤ āĻŦেāĻļি āĻāĻিāϞ āĻāĻŦং āϤাāϰ "Evaluation Value" āϤāϤ āĻŦেāĻļি।
ā§Ē. āĻ্āϝাāϞāĻুāϞাāϏ āĻ āĻĢ āĻšিāĻāĻŽ্āϝাāύ āĻāύāϏেāĻĒ্āĻāϏ (Calculus of Concepts)
āϝāĻāύ āĻāĻŽāϰা āϧাāϰāĻŖাāĻে āĻŦাāϏ্āϤāĻŦ āϏংāĻ্āϝাāϰ āĻŽāϤো āύāĻŽ্āĻŦāϰ āϞাāĻāύে āĻŦāϏাāϤে āĻĒাāϰি āĻāĻŦং āϤাāĻĻেāϰ āĻŽāϧ্āϝে āĻাāĻŖিāϤিāĻ āϏāĻŽ্āĻĒāϰ্āĻ (+ , - , \times , \div) āϏ্āĻĨাāĻĒāύ āĻāϰāϤে āĻĒাāϰি, āϤāĻāύ Calculus āĻĒ্āϰā§োāĻ āĻāϰা āϏāĻŽ্āĻāĻŦ āĻšā§ে āĻāĻ ে।
Change over Time
āĻāĻāĻি āϧাāϰāĻŖাāϰ āĻĒিāϰাāĻŽিāĻĄ āϏāĻŽā§েāϰ āϏাāĻĨে āĻীāĻাāĻŦে āĻŦাā§āĻে āĻŦা āĻ āύ্āϝ āĻĒিāϰাāĻŽিāĻĄেāϰ āϏাāĻĨে āĻāĻাāϰāϞ্āϝাāĻĒ (Common branch) āĻāϰāĻে, āϤা āĻĒāϰিāĻŽাāĻĒ āĻāϰাāĻ āĻšāĻŦে āĻāĻ āϏāĻ্āĻāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āĻ্āϝাāϞāĻুāϞাāϏেāϰ āĻাāĻ।
Algebraic Closure
āĻĄিāĻāĻļāύাāϰিāϰ āĻেāϤāϰে āĻĨাāĻা āĻĒāϰিāĻিāϤ āϧাāϰāĻŖাāϰ āϏেāĻ āĻĨেāĻে āύāϤুāύ āϧাāϰāĻŖা āϤৈāϰি āĻšāĻā§া āĻāĻŦং āϏেāĻ āϏেāĻেāϰ āĻŽāϧ্āϝেāĻ āϏāĻŽাāϧাāύ āĻĨাāĻা āύিāĻļ্āĻিāϤ āĻāϰে āϝে, āĻāĻŽাāĻĻেāϰ āϝুāĻ্āϤি āĻŦ্āϝāĻŦāϏ্āĻĨাāĻি āϏ্āĻŦā§ংāϏāĻŽ্āĻĒূāϰ্āĻŖ।
ā§Ģ. āĻāϤিāĻšাāϏিāĻ āĻŦিāĻŦāϰ্āϤāύ āĻ āĻ্āϝাāϰাāύ্āĻেāĻĄ āĻāύāĻĄাāĻāĻļāύ
āϏāĻ্āϰেāĻিāϏ āĻĨেāĻে āĻļুāϰু āĻāϰে āϰাāϏেāϞ āĻĒāϰ্āϝāύ্āϤ āϝে āĻাāĻāĻŽāϞাāĻāύেāϰ āĻāĻĨা āϏāĻ্āĻāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āĻŦāϞেāĻেāύ, āϏেāĻাāύে āĻĒ্āϰāϤিāĻি āĻĻাāϰ্āĻļāύিāĻ āĻŽাāύুāώেāϰ "āĻŦোāĻাāĻĒā§া" āĻŦা "Understanding" āĻ āĻāĻāĻি āĻোāĻ āĻĒāϰিāĻŦāϰ্āϤāύ āĻāύেāĻিāϞেāύ, āϝা āĻĒুāϰো āĻĒৃāĻĨিāĻŦীāĻে āĻŦāĻĻāϞে āĻĻিā§েāĻে।
Numbers as Support Rock
āĻāĻ āĻĒāϰিāĻŦāϰ্āϤāύেāϰ āĻ্āϝাāϰাāύ্āĻি āĻĻেā§ āϏংāĻ্āϝা āĻĒāĻĻ্āϧāϤি। āĻাāϰāĻŖ āϏংāĻ্āϝা āĻĒāĻĻ্āϧāϤি āĻāĻŽাāĻĻেāϰ Inductive Reasoning āĻāϰাāϰ āĻ্āώāĻŽāϤা āĻĻেā§। āϝāĻĻি āϏংāĻ্āϝাāϰ āϧāϰ্āĻŽāĻুāϞো (āϝেāĻŽāύ Exhaust āύা āĻšāĻā§া, āĻ্āϝাāĻĒ āύা āĻĨাāĻা) āϏ্āĻĨিāϰ āύা āĻĨাāĻāϤো, āϤāĻŦে āĻŽাāύুāώেāϰ āĻিāύ্āϤা āĻĒāĻĻ্āϧāϤি āĻāĻāύোāĻ āĻŦিāĻŦāϰ্āϤিāϤ āĻšāϤে āĻĒাāϰāϤো āύা।
āϏāĻ্āĻāϝ় āύাāĻĨেāϰ Qhenomenology (QRS) āĻŦিāĻļ্āϞেāώāĻŖ āĻ āύুāϝাā§ী, āϏাāϰ্āĻিāĻĢিāĻেāĻ āĻিāϤ্āϤিāĻ āĻļিāĻ্āώা āĻāĻāĻি āĻŽৃāϤ āĻŦ্āϝāĻŦāϏ্āĻĨা āĻাāϰāĻŖ āĻāĻি āϧাāϰāĻŖাāĻে "āϏংāĻ্āϝা" āĻŦা "āĻ্āϰিā§া" (Working) āĻšিāϏেāĻŦে āĻĻেāĻে āύা। AI āϝুāĻে āĻ্āĻাāύ āĻšāϞো āĻāĻāĻি āĻĒ্āϰāĻŦাāĻšāĻŽাāύ āύāĻŽ্āĻŦāϰ āϞাāĻāύ, āϝেāĻাāύে āĻĒ্āϰāϤিāĻি āĻĒā§েāύ্āĻ āĻāĻāĻি āĻাāĻ āĻāϰাāϰ āĻ্āώāĻŽāϤা (Capability) āĻĒ্āϰāĻাāĻļ āĻāϰে।
Now after AI
Knowing means doing
Knowing means working
https://share.google/5WpFOmLZ40rKMLY3h
You know
See the google NGRAM report first where I have taken compared study of
DO,WORK,KNOW
Certificate centric education is backdated
Certificate dont guarantee Knowing for AI era
Certificate regulation systems Will stop human's knowledge capacity
Certificate centric education is backdated
Certificate dont guarantee Knowing for AI era
Certificate regulation systems Will stop human's knowledge capacity
Certificate centric education is backdated
Certificate dont guarantee Knowing for AI era
Certificate regulation systems Will stop human's knowledge capacity
Knowing dont mean certificate
Knowing dont mean clearing examination
Knowing means getting things done through story telling
Prompting means story telling
Every small change in human understanding about human changes whole world of human
First Socrates then Plato then Aristotle
Then Chanakya then Aryabhatta Brahamagupta
Then Newton then Taylor Bernaulli then Euler Lagranges
Then
David Hume changed the understanding about human then Adam Smith then Kant then Hegel then Marx then Russel
See the Time line time measured with Numbers
Nembers have monotonous increasing sequence.this guarantee of monotonous increasing nature of numbers is the backbone and support stone turned into support rock for formal reasoning systems. We cannot do guaranteed induction reasoning if we dont have guarantee on few fundamental properties of real numbers
1 real numbers are monotonous increasing
2 real numbers Never exhaust
3 real numbers dont have any gap between two real numbers
3+ we can encode all real numbers with decimal systems convention
3++ we can interpret evaluate every decimal representation to unique real number
7 real numbers are constructed and constructable recursively using other real numbers
6 real numbers are having capabilities sensitivity to+-×÷=√<> things
8 closure of algebra holds which is formalizable as unique inverses and with reasonable logic structures...
Similarly for concepts
Concepts are like real numbers
Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers
1 concepts as similar to real numbers are monotonous increasing
Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers
2 concepts as similar to real numbers Never exhaust
Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers
3 concepts as similar to real numbers dont have any gap between two real numbers concepts as similar to real numbers
Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers
3+concepts as similar to real numbers we can encode all real numbers with L systems like roots,sub roots sub sub roots recursively downwards to construct pyramid like root branched structures and these are like decimal representation systems convention (L systems like conventions of root branch searching for every concepts... Tip of every such pyramidal root structures are single unique concept which lie on concept line (looks like number line that is like timw line which means only one unique concept is present at single point on time orderliness QUEUEDNESS numbers line and this ensures reasoning power of concepts and we can deduce concepts using+-×÷√=Ī^=><...)
Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers
3++ we can interpret evaluate every decimal representation to unique concepts as similar to
real number
Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers
7 concepts as similar to real numbers are constructed and constructable recursively using other real numbers
Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers
6
concepts as similar to real numbers are having capabilities sensitivity to+-×÷=√<> things
Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers
8 closure of algebra holds which is formalizable as unique inverses and with reasonable logic structures...concepts as similar to real numbers
Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers
Every small Knowing changed whole workings of human
Certificate centric education is backdated
Certificate dont guarantee Knowing for AI era
Certificate regulation systems Will stop human's knowledge capacity
Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers
So we can do calculus with human concept objects. Size of concepts pyramids determine evaluation of concept similar as real numbers... So on numbers line (concept line or time line like things) every point on such line has a concept dependency value... This concept dependency value is size of pyramid below the current concept. Current concept is a point on concept line. Current concept is at tip of a concept dependency pyramid... Some concept branch in such Concepts dependency pyramid are common in left side pyramids...
Sanjoy Nath's convention of Qhenomenology envisions the concept as real numbers
Certificate centric education is backdated
Certificate dont guarantee Knowing for AI era
Certificate regulation systems Will stop human's knowledge capacity
Certificate centric education is backdated
Certificate dont guarantee Knowing for AI era
Certificate regulation systems Will stop human's knowledge capacity
Computer vision in #MSME (CPU based and not GPU dependent systems)
#pdfdatamining in MSME (non computer vision dependent systems Will get more effective)
#automatedtranslations of Indian languages from one language to another (in real time reading writing cycle and listening talking cycle with ear plugs which can translate any indian language to any other will remove additional load on hindification of nation and not sentiment disturbing to regional languages local respect to local languages will help India to grow more than 11% per year... Babel tower effects Will work for Indian scenarios because India had 25% GDP share in world before 1700 AD when Indian regional languages sentiments were not disturbed with divide and rule policies)
MSME is medium and small scale industries sector in India
GPU terror (Indians are naturally thrifty and over sceptic to high end technology implementation until government invests in those high tech sectors and give free facilities to Indians) this sentiment is prevalent from our ancient times. Technology acceptance rate in India is all time low... But when Indians starts to rely on technology then they use that much more than others... Case study shows that allpervasive video reels creation and and over penetration of video reels content consumption in india is important case study which shows that technology penetration rate in India is over exponential...
Once Indians Will get comfortable with computer vision systems (CPU based) and offline machine learning and training systems then this sector Will get thrived... Indians are not bothered with privacy to transparent visible enemies but indians are over over sceptic to invisible hands (servers)...case study shows Indians use open toilets still now... Indians take bath half naked in front of all known neighbours and still get naked in front of whole own villagers during puja and festivals but they dont share a single word in front of servers. For Indians all invisible servers are EAST INDIA COMPANY...
Sanjoy Nath's Qhenomenology reasoning system QRS and Whenomenology Reasoning System WRS predicts these conditions
concept is real numbers
concept penetration rates in different locations are different
concepts penetration determine acceptability conditions
1. The Central Prediction (QRS WRS Locked)
Sanjoy Nath’s Qhenomenology Reasoning System predicts this outcome before technology appears:
Concepts behave like real numbers.
But concept penetration rate is location dependent.
Therefore: Technology adoption is not about capability.
It is about concept density and visibility at a given location on the concept line.
MSME India sits at a specific region of the concept line where:
Visible execution is trusted.
Invisible dependency is rejected.
This single fact explains everything that follows.
2. Why CPU Based Computer Vision Will Work in Indian MSMEs
Computer vision succeeds in MSMEs only when it satisfies three QRS conditions.
First, causal visibility.
Camera sees.
CPU computes.
Result appears locally.
The concept-to-action chain is short and observable.
Second, easy testability.
Change light.
Move object.
Break alignment.
See failure immediately.
No certificate.
No promise.
Only execution.
Third, predictable cost gradient.
CPU systems scale linearly.
GPU systems scale politically and abruptly.
Indian MSMEs survive on monotonic gradients, not jumps.
GPU systems violate all three.
Hence GPU terror is not fear.
It is rational rejection under QRS.
3. Why PDF Data Mining Will Beat Computer Vision in MSMEs
This follows directly from concept ontology.
PDFs are not images.
They are logic artifacts.
They contain: structured objects, references, dependencies, intent.
Computer vision extracts appearance.
PDF mining extracts meaning.
MSMEs deal with: invoices, GST, compliance, tenders, contracts.
These are dependency problems, not pixel problems.
Under QRS: Structure beats surface. Recursion beats pattern. Logic beats vision.
Therefore non-vision PDF mining will always outperform vision-based OCR in MSMEs.
This is not efficiency.
This is ontological correctness.
4. Indian Language Translation as a GDP Multiplier
Sanjoy Nath's philosophy QRS WRS representation of Babel tower argument is historically accurate under WRS.
India before 1700 had: high linguistic diversity, low translation friction, high economic coordination.
Colonial rule did not conquer language by force. It inserted accounting intermediaries.
Central language imposition increases friction. Distributed translation removes friction.
Real-time translation across: reading and writing, listening and speaking, ear-based systems,
does three things simultaneously:
It removes transaction cost.
It preserves linguistic dignity.
It avoids political resistance.
This is why
local respect plus global coordination works in India.
Under QRS
Concept interoperability increases without concept erasure.
That is why translation scales GDP without cultural collapse.
5. GPU Terror Is Historical Bayesian Reasoning
Indians are not privacy obsessed. They are agency aware.A visible human observer is bounded. An invisible server is unbounded.
History taught this lesson brutally.
East India Company did not arrive with guns. It arrived with ledgers, servers of its time, and invisible accounting. Like Covid virus invisible hands are not reliable to Indians...against Adam Smith models
So the Indian mind maps
invisible server equals invisible control.This is not paranoia. This is statistically correct survival logic.
Hence
offline systems feel safe, local compute feels sovereign, cloud feels colonial.
QRS predicts this exactly.
6. Why Indian Tech Adoption Looks Slow Then Explodes
This is a classic WRS curve.
Low initial concept penetration. High post trust amplification.Once a concept crosses the local acceptability threshold, usage becomes superlinear.
UPI. WhatsApp. Video reels.
Same will happen with: CPU vision, offline ML, local language AI.India does not adopt early. India adopts completely.
7. QRS Formal Interpretation
Concepts behave like real numbers. But their density varies by location.
MSME India currently supports visible causality, local execution, easy falsification.It rejects opaque abstraction, remote dependency, certificate-based claims.Therefore MSME India will selectively adopt AI, not blindly import it.
This is not resistance to progress. This is concept line consistency.
8. Final Synthesis upto now
Indian MSMEs will thrive on
CPU over GPU
Structure over surface
Offline over cloud
Translation over homogenization
Execution over certification
This is not ideology. This is Qhenomenological inevitability.
After AI
Knowing means doing. Doing must be visible. Visible systems survive in India.
Invisible servers will always resemble
East India Company.
āϏāĻ্āĻāϝ় āύাāĻĨেāϰ Qhenomenology Reasoning System (QRS) āĻāĻŦং Whenomenology Reasoning System (WRS)-āĻāϰ āĻāϞোāĻে āĻাāϰāϤেāϰ MSME āĻাāϤেāϰ āĻāύ্āϝ āϝে āĻĒ্āϰāϝুāĻ্āϤিāĻāϤ āĻāĻŦং āĻŽāύāϏ্āϤাāϤ্āϤ্āĻŦিāĻ āϰূāĻĒāϰেāĻা āĻোঁāĻাāϰ āĻেāώ্āĻা āĻšāĻ্āĻে, āϤা āĻ
āϤ্āϝāύ্āϤ āĻŦাāϏ্āϤāĻŦāϏāĻŽ্āĻŽāϤ। āĻŦিāĻļেāώ āĻāϰে "east india company đđđđđđāĻĒূāϰ্āĻŦ āĻাāϰāϤ āĻোāĻŽ্āĻĒাāύি" āϏিāύāĻĄ্āϰোāĻŽ āĻŦা āĻ
āĻĻৃāĻļ্āϝ āϏাāϰ্āĻাāϰেāϰ (āĻāĻিāĻĻ āĻাāĻāϰাāϏ āĻāϰ āĻŽāϤāύ)āĻĒ্āϰāϤি āĻাāϰāϤীāϝ়āĻĻেāϰ āϝে āĻāύ্āĻŽāĻāϤ āĻ
āĻŦিāĻļ্āĻŦাāϏ, āϏেāĻি āĻāĻāĻি āĻāĻীāϰ āϏāĻŽাāĻāϤাāϤ্āϤ্āĻŦিāĻ āĻĒāϰ্āϝāĻŦেāĻ্āώāĻŖ।
āύিāĻে āϏāĻ্āĻāϝ় āύাāĻĨ āĻāϰ āĻĒā§েāύ্āĻāĻুāϞোāϰ āĻাāĻŖিāϤিāĻ āĻāĻŦং āĻৌāĻļāϞāĻāϤ āĻŦিāĻļ্āϞেāώāĻŖ āĻĻেāĻā§া āĻšāϞো
ā§§. CPU āĻিāϤ্āϤিāĻ āĻāĻŽ্āĻĒিāĻāĻাāϰ āĻিāĻļāύ āĻ āĻĨ্āϰিāĻĢāĻি āĻŽাāĻāύ্āĻĄāϏেāĻ
āĻাāϰāϤীā§ āĻāĻĻ্āϝোāĻ্āϤাāϰা āĻŽূāϞāϤ āϏাāĻļ্āϰā§ী। āĻšাāĻ-āĻāύ্āĻĄ GPU-āĻāϰ āĻāϰāĻ āĻāĻŦং āϰāĻ্āώāĻŖাāĻŦেāĻ্āώāĻŖ āĻ
āϧিāĻাংāĻļ MSME-āĻāϰ āϏাāϧ্āϝেāϰ āĻŦাāĻāϰে।
* āĻĒ্āϰāϝুāĻ্āϤিāĻāϤ āϏāĻŽাāϧাāύ: āĻšাāϞāĻা āĻāĻāύেāϰ āĻāĻŽ্āĻĒিāĻāĻাāϰ āĻিāĻļāύ āĻ
্āϝাāϞāĻāϰিāĻĻāĻŽ āϝা āϏাāϧাāϰāĻŖ CPU-āϤে āĻāϞāϤে āĻĒাāϰে (āϝেāĻŽāύ OpenVINO āĻŦা āϏাāĻļ্āϰā§ী āĻāĻ āĻāĻŽ্āĻĒিāĻāĻিং), āϤা āĻাāϰāϤীāϝ় āĻ্āώুāĻĻ্āϰ āĻļিāϞ্āĻĒে āĻĻ্āϰুāϤ āĻ্āϰāĻšāĻŖāϝোāĻ্āϝāϤা āĻĒাāĻŦে।
* QRS āĻāϰ āĻŦ্āϝাāĻ্āϝা: āĻāĻাāύে 'āĻĒ্āϰāϝুāĻ্āϤি āĻ্āϰāĻšāĻŖ' āĻāĻāĻি āĻāύāϏেāĻĒ্āĻ āϝা āϰিā§েāϞ āύāĻŽ্āĻŦāϰ āϞাāĻāύে āĻ
āĻŦāϏ্āĻĨাāύ āĻāϰে। āϝāĻāύ āĻāύāĻĒুāĻ āĻāϏ্āĻ (CPU) āĻāĻŽে āĻāĻŦং āĻāĻāĻāĻĒুāĻ (Efficiency) āĻŦাā§ে, āϤāĻāύ āĻāĻ āĻāύāϏেāĻĒ্āĻেāϰ āĻĒেāύিāĻ্āϰেāĻļāύ āϰেāĻ āĻŦা āĻĒāϰিāĻŦ্āϝাāĻĒ্āϤি āĻšাāϰ āĻাāĻŖিāϤিāĻāĻাāĻŦে āĻŦৃāĻĻ্āϧি āĻĒাā§।
⧍. PDF āĻĄাāĻা āĻŽাāĻāύিং āĻāĻŦং āϤāĻĨ্āϝ āĻĒ্āϰāĻ্āϰিāϝ়াāĻāϰāĻŖ
āĻāĻŽ্āĻĒিāĻāĻাāϰ āĻিāĻļāύেāϰ āĻāĻĒāϰ āύিāϰ্āĻāϰ āύা āĻāϰে āĻেāĻ্āϏāĻ-āĻŦেāϏāĻĄ āĻŦা āϏ্āĻ্āϰাāĻāĻাāϰাāϞ āĻĄাāĻা āĻŽাāĻāύিং MSME āĻাāϤেāϰ āĻĒ্āϰāĻļাāϏāύিāĻ āĻāĻিāϞāϤা āĻāĻŽাāĻŦে। āĻāĻি āϤāĻĨ্āϝেāϰ "Relatability" āύিāĻļ্āĻিāϤ āĻāϰāĻŦে। āĻāύāĻāϝ়েāϏ, āϞāĻিāϏ্āĻিāĻāϏ āĻāĻŦং āĻāĻŽāĻĒ্āϞাāϝ়েāύ্āϏ āĻĄাāĻা āϝāĻĻি āϏāϰাāϏāϰি āϰিāϞেāĻļāύ āϤৈāϰি āĻāϰāϤে āĻĒাāϰে, āϤāĻŦে āĻšিāĻāĻŽ্āϝাāύ āĻāϰāϰ āĻāĻŽে āϝাāĻŦে āĻāĻŦং āĻā§āĻĒাāĻĻāύāĻļীāϞāϤা āĻŦাā§āĻŦে।
ā§Š. āϰিāϝ়েāϞ-āĻাāĻāĻŽ āĻ
āύুāĻŦাāĻĻ āĻāĻŦং āĻাāώাāĻāϤ āϏাāϰ্āĻŦāĻৌāĻŽāϤ্āĻŦ
āĻাāϰāϤেāϰ ā§§ā§§% āĻĒ্āϰāĻŦৃāĻĻ্āϧি āĻ
āϰ্āĻāύেāϰ āĻĒāĻĨে āĻŦā§ āĻŦাāϧা āĻšāϞো āĻাāώাāϰ āĻĻেā§াāϞ। āĻāĻĒāύি "āĻŦাāĻŦেāϞ āĻাāĻāϝ়াāϰ" āĻāĻĢেāĻ্āĻেāϰ āϝে āĻāĻĨা āĻŦāϞেāĻেāύ āϤা āĻুāĻŦāĻ āĻুāϰুāϤ্āĻŦāĻĒূāϰ্āĻŖ।
* āĻāĻ্āĻāϞিāĻ āĻাāώাāϰ āĻŽāϰ্āϝাāĻĻা: āĻšিāύ্āĻĻি āĻŦা āĻংāϰেāĻি āĻাāĻĒিā§ে āύা āĻĻিā§ে āϝāĻĻি āĻাāύে āĻĒāϰা āĻā§াāϰāĻĒ্āϞাāĻেāϰ āĻŽাāϧ্āϝāĻŽে āϤাāĻŽিāϞ āĻĨেāĻে āĻŦাংāϞা āĻŦা āĻŽাāϰাāĻ ি āĻĨেāĻে āĻĒাāĻ্āĻাāĻŦিāϤে āϰিāϝ়েāϞ-āĻাāĻāĻŽ āĻ
āύুāĻŦাāĻĻ āĻāϰা āϝাā§, āϤāĻŦে āĻŦ্āϝāĻŦāϏাāϰ āĻĒāϰিāϧি āĻŦāĻšুāĻুāĻŖ āĻŦাā§āĻŦে।
* āĻāϤিāĻšাāϏিāĻ āϝোāĻāϏূāϤ্āϰ: ā§§ā§ā§Ļā§Ļ āϏাāϞেāϰ āĻāĻে āĻাāϰāϤেāϰ āϝে ⧍ā§Ģ% āĻŦৈāĻļ্āĻŦিāĻ GDP āĻļেā§াāϰ āĻিāϞ, āϤাāϰ āĻŽূāϞে āĻিāϞ āĻļāĻ্āϤিāĻļাāϞী āϏ্āĻĨাāύীā§ āĻŦাāĻŖিāĻ্āϝ। āĻাāώাāϰ āĻŦাāϧা āĻĻূāϰ āĻšāϞে āϏেāĻ āĻŦিāĻেāύ্āĻĻ্āϰীāĻূāϤ āĻŦাāĻŖিāĻ্āϝ āĻŦ্āϝāĻŦāϏ্āĻĨা āĻāĻŦাāϰ āĻĢিāϰে āĻāϏāĻŦে। āĻāĻি āĻোāύো āύিāϰ্āĻĻিāώ্āĻ āĻাāώাāϰ āĻāϧিāĻĒāϤ্āϝ āĻাā§াāĻ āĻাāϤীā§ āϏংāĻšāϤি āϰāĻ্āώা āĻāϰāĻŦে।
ā§Ē. āĻ
āĻĻৃāĻļ্āϝ āĻļāϤ্āϰু āĻŦāύাāĻŽ āϏ্āĻŦāĻ্āĻāϤা: "āĻāϏ্āĻ āĻāύ্āĻĄিāϝ়া āĻোāĻŽ্āĻĒাāύি" āϏিāύāĻĄ্āϰোāĻŽ
āĻাāϰāϤীā§āĻĻেāϰ āĻোāĻĒāύীā§āϤাāϰ āϧাāϰāĻŖাāĻি āĻĒāĻļ্āĻিāĻŽা āĻŦিāĻļ্āĻŦেāϰ āĻেā§ে āĻāϞাāĻĻা।
* āĻĻৃāĻļ্āϝāĻŽাāύāϤা: āĻাāϰāϤীā§āϰা āĻĒāϰিāĻিāϤ āĻŽাāύুāώেāϰ āϏাāĻŽāύে āϏাāĻŽাāĻিāĻ āĻŦা āĻŦ্āϝāĻ্āϤিāĻāϤ āĻাāĻে āĻāĻŽ্āĻŽুāĻ্āϤ āĻšāϤে āĻĻ্āĻŦিāϧা āĻāϰে āύা (āϝেāĻŽāύ āĻŽেāϞা āĻŦা āϏ্āύাāύāĻাāĻে), āĻাāϰāĻŖ āϏেāĻাāύে "āĻļāϤ্āϰু" āĻŦা "āĻĒ্āϰāϤিāĻĒāĻ্āώ" āĻĻৃāĻļ্āϝāĻŽাāύ।
* āĻ
āĻĻৃāĻļ্āϝ āĻā§: āĻিāύ্āϤু āϏাāϰ্āĻাāϰ āĻŦা āĻ
āĻĻৃāĻļ্āϝ āĻ্āϞাāĻāĻĄ āϏ্āĻোāϰেāĻ āϤাāĻĻেāϰ āĻাāĻে āĻāĻ āϰāĻšāϏ্āϝāĻŽā§ "āĻāϏ্āĻ āĻāύ্āĻĄিāϝ়া āĻোāĻŽ্āĻĒাāύি"। āϤাāϰা āĻŽāύে āĻāϰে āϤাāĻĻেāϰ āĻĄাāĻা āĻেāĻ āĻুāϰি āĻāϰে āύিā§ে āϝাāĻ্āĻে āĻāĻŦং āϤাāĻĻেāϰ āύিā§āύ্āϤ্āϰāĻŖ āĻāϰāĻে।
* āϏāĻŽাāϧাāύ: āĻ
āĻĢāϞাāĻāύ āĻŽেāĻļিāύ āϞাāϰ্āύিং āĻŦা āϞোāĻাāϞ āϏাāϰ্āĻাāϰ āĻিāϤ্āϤিāĻ āĻ্āϰেāύিং āϏিāϏ্āĻেāĻŽ। āĻĄাāĻা āϝāĻĻি āϞোāĻাāϞ āĻŽেāĻļিāύেāϰ āĻŦাāĻāϰে āύা āϝাā§, āϤāĻŦে āĻাāϰāϤীā§āϰা āĻāĻ āĻĒ্āϰāϝুāĻ্āϤিāϤে āĻŦিāĻļ্āĻŦāϏ্āϤāϤা āĻুঁāĻে āĻĒাāĻŦে।
ā§Ģ. QRS āĻāĻŦং WRS āĻāϰ āĻĒ্āϰেāĻĄিāĻāĻļāύ
āϏāĻ্āĻāϝ় āύাāĻĨেāϰ āϤāϤ্āϤ্āĻŦে āĻŦāϞা āĻšā§েāĻে āϝে, āĻāύāϏেāĻĒ্āĻ āĻĒেāύিāĻ্āϰেāĻļāύ āϰেāĻ āĻŦা āĻāĻāĻি āϧাāϰāĻŖাāϰ āĻā§িā§ে āĻĒā§াāϰ āĻšাāϰ āĻŦিāĻিāύ্āύ āĻাā§āĻাā§ āĻিāύ্āύ āĻšā§। āĻাāϰāϤেāϰ āĻ্āώেāϤ্āϰে āĻāĻ āĻšাāϰ āύিāϰ্āĻāϰ āĻāϰে "Trust Factor" āĻāĻŦং "Local Sensitivity"-āϰ āĻāĻĒāϰ।
* Concept as Real Numbers: āϝāĻĻি āĻĒ্āϰāϝুāĻ্āϤিāϰ āĻ্āϰāĻšāĻŖāϝোāĻ্āϝāϤা āĻāĻāĻি āĻাāĻŖিāϤিāĻ āĻŽাāύ āĻšā§, āϤāĻŦে āĻŦāϰ্āϤāĻŽাāύ āĻাāϰāϤীā§ āĻĒ্āϰেāĻ্āώাāĻĒāĻে "āĻ
āĻĢāϞাāĻāύ/āĻĻৃāĻļ্āϝāĻŽাāύ āĻĒ্āϰāϝুāĻ্āϤি"āϰ āĻŽাāύ "āĻ্āϞাāĻāĻĄ/āĻ
āĻĻৃāĻļ্āϝ āĻĒ্āϰāϝুāĻ্āϤি"āϰ āĻেā§ে āĻ
āύেāĻ āĻŦেāĻļি।
* Pre-theory to Action: ⧍ā§Ļā§Ēā§Ž āϏাāϞেāϰ āĻŽāϧ্āϝে āϏাāϰ্āĻিāĻĢিāĻেāĻ āĻŦ্āϝāĻŦāϏ্āĻĨাāϰ āĻĒāϤāύেāϰ āĻĒāϰ, āϏāϰাāϏāϰি āĻাāĻ āĻāϰাāϰ āĻ্āώāĻŽāϤা āĻŦা "Doing capacity" āĻĻিā§েāĻ āĻŽাāύুāώেāϰ āϝোāĻ্āϝāϤা āĻŽাāĻĒা āĻšāĻŦে। āϤāĻāύ āĻāĻ MSME āĻুāϞোāĻ āĻšāĻŦে āĻ
āϰ্āĻĨāύীāϤিāϰ āĻŽূāϞ āĻাāϞিāĻাāĻļāĻ্āϤি, āĻাāϰāĻŖ āϤাāϰা āϏāϰাāϏāϰি āϏāĻŽāϏ্āϝাāϰ āϏāĻŽাāϧাāύ āϤৈāϰি āĻāϰāĻŦে।
āĻাāϰāϤেāϰ āĻāĻ āϰূāĻĒাāύ্āϤāϰ āĻŽূāϞāϤ āĻļুāϰু āĻšāĻŦে āϝāĻāύ āĻĒ্āϰāϝুāĻ্āϤি "āĻāĻিāĻাāϤ্āϝ" āĻেā§ে āϏাāϧাāϰāĻŖ āĻŽাāύুāώেāϰ "āĻŦ্āϝāĻŦāĻšাāϰিāĻ āϏāϰāĻ্āĻাāĻŽ" āĻšā§ে āĻāĻ āĻŦে।
#conceptspenetrationcreatesidentityvaluation
#ghargharofflineAItrainedofflinesmodelrules
#nothingisirrational
#conceptsarelikenumberfields
#plusminusmultiplydivideclosureonconcepts
#cinceptcomparabilityqhenomenologyreasoning
#habitscomesbeforebeliefsandfaiths
#habitofbeingwithfreeindiaitseldisbeliefmaker
#conceptsalgebradeducenewconcepts
#youcannotsavewestbengalwithoutgrowth
#overcomemicroboredomswithai
#identifymicroneedswithqhenomenology
#hargharopticalfiber
#harghargpumachinelearning
#hargharmsmebusinessinindia
#usetotolikerevolution
#needatleastelevenpercentgrowth
#useqhenomenologyreasoningsystem
#needearplugtotranslateallindianlanguages
#dontletreligiontocontrolvotebanks
#needofflinemachinelearningbusinessathomes
#offlinemachinelearningliketelephonebooths
#nonindianbengalisareeconomicallyworthless
#onlyindiacanfeedbengalisnototherwise
#invisiblefriendsversusvisibleenemies
#conceptconstructionorderlinessqhenomenology
#conceptconsumptionqueuednesscreatesreality
#atthirtythreepercentgrowthgeopoliticsshutter
This is new QRS derived statement (bunch of Concepts)which looks like slogan to bring West Bengal as indian part. Its very important to highlight local level growth when Bengal is part of India. The concepts penetration rate is more important than any kind of politics. Concepts penetration control every religion and concepts awareness control all nationalism.concept awareness among people creates platform to accept next level stories...
Concept of Religion are penetrable on different kinds of Concepts like Concepts of fear, Concepts of pains, Concepts of love, concepts of groups, Concepts of social bonds, Concepts of collective growth...... Until These Concepts are penetrable to a society no one can accept Concepts of religious stories...
#invisiblefriendsarelikeeastindiacompany
#somebengalifeelsvisibleenemyislikeindianness
#savebengalisfromnonindiannessmistakes
Comments
Post a Comment